Treatment optimization of the age-related cardiovascular and neurological pathology using known metabolic, cytoprotective, vasodilatory action substances. Review
Abstract
Stressful situations that accompany us during military operations provoke a significant increase in the incidence of cardiovascular and psychoneurological pathology, especially among the elderly. Therefore, there is a need for a complex approach to treatment, in particular, with the use of combined drugs.
The review presents data from preclinical and clinical studies on drugs with metabolic action - meldonium (trimethylhydrazinium propionate), L-arginine, and inosine. It has been shown that, apart from the general pharmacotherapeutic action, these drugs have a significant clinical effect on various illnesses in the form of adjunctive therapy. Antioxidant, neuroprotective, vasodilatory, and several pleiotropic effects of meldonium have been established. The use of meldonium as part of combined therapy improves the prognosis in cardiovascular and neurological disease treatment.
Most reports ascribe the clinical benefits of L-arginine in cardiovascular diseases to the provision of NO. L-arginine is the only precursor for the NO-synthase reaction. NO is produced by all tissues of the body and plays particularly important roles in cardiovascular homeostasis. Very few articles examine the effects of L-arginine supplementation on central nervous system (CNS) function. However, accumulating evidence indicates that NO plays a role in memory formation. The possible role of L-arginine in Alzheimer's disease was investigated, taking into account the known functions of L-arginine in atherosclerosis, redox stress and inflammation, regulation of synaptic plasticity and neurogenesis, as well as modulation of glucose metabolism and insulin activity. Evidence is provided that L-arginine may play a prominent role in protecting against age-related degenerative diseases such as Alzheimer's disease. L-arginine has been demonstrated to improve peripheral circulation, renal function, and immune function. It also possesses anti-stress and adaptogenic capabilities. L-arginine stimulates the release of growth hormone as well as the release of pancreatic insulin and glucagon and pituitary prolactin. The antioxidant property of L-arginine has been well documented in several reports.
As well known that inosenhancesance the myocardial energy potential improvesrove coronary circulation. At the same time over the past two decades, inosine has been shown to evoke significant improvements in motor function and visceral organ control in preclinical models of neurologic injury including spinal cord injury, stroke, traumatic brain injury, multiple sclerosis, and Parkinson`s disease through its ability to enhance the growth of axon collaterals from undamaged neurons. The basis of these beneficial effects stems from its antioxidant, anti-inflammatory, anxiogenic and neuroprotective properties.
References
Lewandowski, E. D. Metabolic mechanisms associated with antianginal therapy. Circ. Res. 2000, 86 (5), pp. 487-489. https://doi.org/10.1161/01.res.86.5.487
Kalvinsh, I. Ya. Mildronate and trimetazidine: similarities and differences. Terra Medica 2002, 3, pp. 1-3. (in Russian)
Hayashi, Y.; Kirimoto, T.; Asaka, N. et al. Beneficial effects of MET-88, a gamma-butyrobetaine hydrolase inhibitor in rats with heart failure following myocardial infarction. Eur. J. Pharmacol. 2000, 395 (3), pp. 217-224. https://doi.org/10.1016/s0014-2999(00)00098-4
Ermakovich, I. I. The place of meldonium in the correction of endothelial dysfunction. Health of Ukraine 2012, 5, p. 41. (in Russian)
utai, M. I.; Lysenko, A. F.; Tovstukha, V. V.; Moiseenko, OI Evaluation of the antianginal efficacy of meldonium (Trizipine) in patients with stable coronary heart disease and exertional angina. Ukrayinsky medychny chasopys 2014, 4, 102. (in Russian)
Zadonchenko, V. S.; Shekhyan, G. G.; Timofeeva, N. Yu.; Snetkova, A. A.; Yalymov, A. A. Cytoprotection in general therapeutic practice. Local therapist 2012, 4, p. 37. (in Russian)
Mikhin, V. P.; Pozdnyakov, Yu. M.; Khlebodarov, F. E.; Koltsova, O. N. Mildronate in cardiological practice - results, new directions, prospects. Cardiovascular Therapy and Prevention 2012, 11 (1), pp. 96-103.(in Russian)
Sirenko, Yu. M.; Rekovets, O. L.; Kushnir, S. M.; Torbas, O. O.; Gavrilenko, T. I.; Rizhkova, N. A. Optimization of the treatment of patients with arterial hypertension and concurrent ischemic heart disease due to stasis of Trizipin (meldonium). Journal Arterial hypertension 2017, 1, 51. (in Ukrainian)
Statsenko, M. E.; Evtereva, E. D.; Turkina, S. V. Possibility of using a myocardial cytoprotector in combination therapy of patients with chronic heart failure and metabolic syndrome. Consilium Medicum (cardiology) 2010, 12, 10, pp. 76-82. (in Russian)
Topchii, I. I.; Denisenko, V.P. Use of meldonium in the treatment of patients with diabetic nephropathy. Journal Arterial hypertension 2013, 6, 32. (in Ukrainian)
Salyzhyn, T. I. Effect of combination therapy with fosinopril and meldonium on the indices of 48-hour monitoring of blood pressure and myocardium geometry in hemodialysis patients with chronic heart failure. Ukrainian Journal of Nephrology and Dialysis 2017, 1. 53. https://doi.org/10.31450/ukrjnd.1(53).2017.07
Sjakste, N. I.; Dzintare, M. Ya.; Kalvinsh, I. Ya. The role of NO induction in the mechanism of action of the cytoprotector Olvazol, an original regulator of endothelial function. Medical perspectives 2012, 17, 2, pp. 2-119. (in Russian)
Soares, R. N.; Ramirez-Perez, F. I.; Cabral-Amador, F. J. et al. SGLT2 inhibition attenuates arterial dysfunction and decreases vascular F-actin content and expression of proteins associated with oxidative stress in aged mice. GeroScience 2022, 44, 3, 1657-1675. https://doi.org/10.1007/s11357-022-00563-x
Sidney, S.; Go, A. S.; Jaffe, M. G. et al. Association between ageing of the US population and heart disease mortality from 2011 to 2017. JAMA Cardiol. 2019, 4 (12), pp. 1280-1286. https://doi.org/10.1001/jamacardio.2019.4187
Rossman, M. J.; LaRocca, T. J.; Martens, C. R.; Seals, D. R. Healthy lifestyle-based approaches for successful vascular aging. J Appl Physiol 2018, 125, 12, pp. 1888-1900. https://doi.org/10.1152/japplphysiol.00521.2018
Steenman, M.; Lande, G. Cardiac aging and heart disease in humans. Biophys Rev. 2017, 9, 2, pp. 131-137. https://doi.org/10.1007/s12551-017-0255-9
Ungvari, Z.; Tarantini, S., Sorond, F. et al. Mechanisms of vascular aging, a geroscience perspective. J Am Coll Cardiol 2020, 75, 8, pp. 931-941. https://doi.org/10.1016/j.jacc.2019.11.061
Zhang, C.; Tao, L.; Cardiovascular Group SoG. Chinese Medical Association Expert consensus on clinical assessment and intervention of vascular aging in China. Aging Medicine 2018, 1, 3, pp. 228-237. https://doi.org/10.1002/agm2.12049
Mathus-Vliegen, E. M. Obesity and the elderly. J Clin Gastroenterol 2012, 46, 7, pp. 533-544.
Hales, C. M.; Carroll, M. D.; Fryar, C. D.; Ogden, C. L. Prevalence of obesity and severe obesity among adults: United States, 2017-2018. NCHS Data Brief 2020, 360, pp. 1-8.
Babushkina, A. V. L-arginine from the point of view of evidence-based medicine. Ukrayinsky medychny chasopys 2009, 6. 74. (in Russian)
Pierce, G. L.; Eskurza I.; Walker, A. E.; Fay, T. N.; Seals, D. R. Sex-specific effects of habitual aerobic exercise on brachial artery flow-mediated dilation in middle-aged and older adults. Clin Sci (Lond.) 2011, 120, 1, pp. 13-23. https://doi.org/10.1042/cs20100174
Patel, R. S.; Al Mheid, I.; Morris, A. A. et al. Oxidative stress is associated with impaired arterial elasticity. Atherosclerosis 2011, 218, 1, pp. 90-95. https://doi.org/10.1016/j.atherosclerosis.2011.04.033
Seals, D. R.; Jablonski, K. L.; Donato, A. J. Aging and vascular endothelial function in humans. Clin Sci (Lond.) 2011, 120. 9, pp. 357-375. https://doi.org/10.1042/cs20100476
Bratic, A.; Larsson, N.-G. The role of mitochondria in aging. J Clin Invest 2013, 123, 3, pp. 951-957. https://doi.org/10.1172/jci64125
Dai, D.-F.; Rabinovitch, P. S.; Ungvari, Z.; Sinclair, D.; North, B. Mitochondria and cardiovascular aging. Circ Res 2012, 110, 8, pp. 1109-1124. https://doi.org/10.1161%2FCIRCRESAHA.111.246140
Tyrrell, D. J.; Blin, M. G.; Song, J. et al. Age-associated mitochondrial dysfunction accelerates atherogenesis. Circ Res 2020, 126, 3, pp. 298-314. https://doi.org/10.1161/circresaha.119.315644
Lozhkin, A.; Vendrov, A. E.; Pan, H. et al. NADPH oxidase 4 regulates vascular inflammation in aging and atherosclerosis. J Mol Cell Cardiol 2017, 102, pp. 10-21. https://doi.org/10.1016/j.yjmcc.2016.12.004
Lantz, J.; Renner, J.; Lanne, T.; Karlsson, M. Is aortic wall shear stress affected by aging? An image-based numerical study with two age groups. Med Eng Phys 2015, 37, 3, pp. 265-271. https://doi.org/10.1016/j.medengphy.2014.12.011
Jableska, A.; Checinski, P.; Krauss, H. et al. The influence of two different doses of L-arginine oral supplementation on nitric oxide (NO) concentration and total antioxidant status (TAS) in atherosclerotic patients. Med Sci Monit 2004, 10, 1, pp. CR29-32.
Maxwell, A. J.; Anderson, B.; Zapien, M. P.; Cooke, J. P. Endothelial dysfunction in hypercholesterolemia is reversed by a nutritional product designed to enhance nitric oxide activity. Cardiovasc Drugs Ther 2000, 14, 3, pp. 309-316.
Okamoto, M.; Etani, H.; Yagita, Y. et al. Diminished reserve for cerebral vasomotor response to L-arginine in the elderly: evaluation by transcranial Doppler sonography. Gerontology 2001, 47, 3, pp. 131-135. https://doi.org/10.1159/000052786
Nagaya, N.; Uematsu, M.; Oya, H. et al. Short-term oral administration of L-arginine improves hemodynamics and exercise capacity in patients with precapillary pulmonary hypertension. Am J Respir Crit Care Med 2001, 163, 4, pp. 887-891. https://doi.org/10.1164/ajrccm.163.4.2007116
Slobodskyi, V. A. Experience in the use of Tivortin aspartate in the treatment of patients with stable angina pectoris. Ukrayinsky medychny chasopys 2009, 5, 73, pp. 40-43. URL: http://www.umj.com.ua/article/2865; http://www.umj.com.ua/archive/73/pdf/1511_ukr.pdf (in Ukrainian)
Gad, M. Z. Anti-aging effects of L-arginine. Journal of Advanced Research 2010, 1, 3, pp.169-177. https://doi.org/10.1016/j.jare.2010.05.001
Morris, Jr. S. M. Arginine: beyond protein. Am J Clin Nutr 2006, 83, 2, pp. 508S-512S. https://doi.org/10.1093/ajcn/83.2.508s
Dhanakoti, S. N.; Brosnan, J. T.; Herzberg, G. R.; Brosnan, M. E. Renal arginine synthesis: studies in vitro and in vivo. Am J Physiol 1990, 259, 3, 1, pp. E437-E442. https://doi.org/10.1152/ajpendo.1990.259.3.e437
Watford, M. The urea cycle: a two-compartment system. Essays Biochem 1991, 26, pp. 49-58.
Kamada, Y.; Nagaretani, H.; Tamura, S. et al. Vascular endothelial dysfunction resulting from L-arginine deficiency in a patient with lysinuric protein intolerance. J Clin Invest 2001, 108, 5, pp. 717-724. https://doi.org/10.1172/jci11260
Boger, R. H.; Bode Boger, S. M. The clinical pharmacology of L-arginine. Annu Rev Pharmacol Toxicol 2001, 41, pp. 79-99. https://doi.org/10.1146/annurev.pharmtox.41.1.79
Boger, R. H.; Ron, E. S. L-arginine improves vascular function by overcoming deleterious effects of ADMA, a novel cardiovascular risk factor. Altern Med Rev 2005, 10, 1, pp. 14-23.
Mesallamy, E. L.; Abdel, H. O.; Hamid, S. G.; Gad, M. Z. Oxidative stress and asymmetric dimethylarginine are associated with cardiovascular complications in hemodialysis patients: improvements by L-arginine intake. Kidney Blood Pres Res 2008, 31, 3, pp. 189-195. https://doi.org/10.1159/000135655
Moody, J. A.; Vernet, D.; Laidlaw, S.; Rajfer, J.; Gonzalez Cadavid, N. F. Effects of long-term oral administration of L-arginine on the rat erectile response. J Urol 1997, 158, 3, 1, pp. 942-947. https://doi.org/10.1097/00005392-199709000-00076
Melman, A. This month in investigative urology. L-arginine and penile erection. J Urol 1997, 158, 3, 1, p. 686. https://doi.org/10.1016/S0022-5347(01)64294-0
Belmonte, L. J.; Whittle, B. J.; Moncada, S. The actions of nitric oxide donors in the prevention or induction of injury to the rat gastric mucosa. Br J Pharmacol 1993, 108, 1, pp. 73-78. https://doi.org/10.1111/j.1476-5381.1993.tb13442.x
Calatayud, S.; Sanz, M. J.; Canet, A. et al. Mechanisms of gastroprotection by transdermal nitroglycerin in the rat. Br J Pharmacol 1999, 127, 5, pp. 1111-1118. https://doi.org/10.1038%2Fsj.bjp.0702649
Khattab, M. M.; Gad, M. Z.; Abdallah, D. Protective role of nitric oxide in indomethacin-induced gastric ulceration by a mechanism independent of gastric acid secretion. Pharmacol Res 2001, 43, 5, pp. 463-467. https://doi.org/10.1006/phrs.2001.0801
Lazaratos, S.; Kashimura, H.; Nakahara, A. et al. L-arginine and endogenous nitric oxide protect the gastric mucosa from endothelin-1-induced gasrtic ulcers in rats. J Gastroenterol 1995, 30, 5, pp. 578-584. https://doi.org/10.1007/bf02367782
Jimenez, D.; Martin, M. J.; Pozo, D. et al. Mechanisms involved in protection afforded by L-arginine in ibuprofen-induced gastric damage: role of nitric oxide and prostaglandins. Dig Dis Sci 2002, 47, 1, pp. 44-53.
Brzozowski, T.; Konturek, S. J.; Drozdowich, D. et al. Healing of chronic gastric ulcerations by L-arginine. Role of nitric oxide, prostaglandins, gastrin and polyamines. Digestion 1995, 56, 6, pp. 463-471. https://doi.org/10.1159/000201277
Schwentker, A.; Vodovotz, Y.; Weller, R.; Billiar, T. R. Nitric oxide and wound repair: role of cytokines? Nitric Oxide 2002, 7, 1, pp. 1-10. https://doi.org/10.1016/s1089-8603(02)00002-2
Shi, H. P.; Efron, D. T.; Most, D. et al. Supplemental dietary arginine enhances healing in normal but not inducible nitric oxide synthase knockout mice. Surgery 2000, 128, 2, pp. 374-378. https://doi.org/10.1067/msy.2000.107372
Angele, M. K.; Nitsch, S. M.; Hatz, R. A. et al. L-arginine: a unique amino acid for improving depressed wound immune function following hemorrhage. Eur Surg Res 2002, 34, 1-2, pp. 53-60. https://doi.org/10.1159/000048888
Giugliano, D.; Marfella, R.; Verrazzo, G. et al. L-arginine for testing endothelium-dependent vascular functions in health and disease. Am J Physiol 1997, 273, 3, 1, pp. E606-E612. https://doi.org/10.1152/ajpendo.1997.273.3.e606
Wascher, T. C.; Graier, W. F.; Dittrich, P. et al. Effects of low-dose L-arginine on insuline-mediated vasodilation and insulin sensitivity. Eur J Clin Invest 1997, 27, 2, pp. 690-695. https://doi.org/10.1046/j.1365-2362.1997.1730718.x
Lubec, B.; Hayn, M.; Kitzmuller, E. et al. L-arginine reduced lipid peroxidation in patients with diabetes mellitus. Free Radic Biol Med 1997, 22, 1-2, pp. 355-357. https://doi.org/10.1016/s0891-5849(96)00386-3
Piatti, P. M.; Monti, L. D.; Valsecchi, G. et al. Long-term oral L-arginine administration improves peripheral and hepatic insulin sensitivity in type 2 diabetic patients. Diabetes Care 2001, 24, 5, pp. 875-880. https://doi.org/10.2337/diacare.24.5.875
Moncada, S.; Higgs, A. The L-arginine – nitric oxide pathway. N Engl J Med 1993, 329, 27, pp. 2002-2012. https://doi.org/10.1056/nejm199312303292706
Chapman, P. F.; Atkins, C. M.; Allen, M. T. et al. Inhibition of nitric oxide synthesis impairs two different forms of learning. Neuroreport. 1992, 3, 7, pp. 567-570. https://doi.org/10.1097/00001756-199207000-00005
Ohsuka, Y.; Nakaya, J. Effect of oral administration of L-arginine on senile dementia. Am J Med 2000, 108, 5, p. 439. https://doi.org/10.1016/s0002-9343(99)00396-4
Yi, J.; Horky, L. L.; Friedlich, A. L. et al. L-arginine and Alzheimer`s disease. Int J Clin Exp Pathol 2009, 2, 3, pp. 211-238.
Compendium – 2003: Medicines. Eds.: Kovalenko, V. N.; Viktorov, A. P., MORION: Kyiv, 2003; 1388 p. (in Russian)
Doyle, C.; Cristofaro, V.; Sullivan, M. P.; Adam, R. M. Inosine – a Multifunctional Treatment for Complications of Neurologic Injury. Cell Physiol Biochem 2018, 49, pp. 2293-2303. https://doi.org/10.1159/000493831
Liu, F.; You, S. W.; Yao, L. P; Liu, H. L. et al. Secondary degeneration reduced by inosine after spinal cord injury in rats. Spinal Cord 2006, 44, pp. 421-426 https://doi.org/10.1038/sj.sc.3101878.
Conta, A. C.; Stelzner, D. J. Immunomodulatory effect of the purine nucleoside inosine following spinal cord contusion injury in rat. Spinal Cord 2008, 46, pp. 39-44. https://doi.org/10.1038/sj.sc.3102057
Chung, Y. G.; Seth, A.; Doyle, C. et al. Inosine improves Neurogenic Detrusor Overactivity following Spinal Cord Injury. PloS One 2015, 10, p. e0141492. https://doi.org/10.1371/journal.pone.0141492
Kuricova, M.; Ledecky, V.; Liptak, T. et al. Oral administration of inosine promotes recovery after experimental spinal cord injury in rat. Neurol Sci 2014, 35, pp. 1785-1791. https://doi.org/10.1007/s10072-014-1840-3
Doyle, C.; Cristofaro, V.; Sack, B. S. et al. Inosine attenuates spontaneus activity in the rat neurogenic bladder through an A2B pathway. Sci Rep 2017, 7, p. 44416. https://doi.org/10.1038/srep44416
Zai, L.; Ferrari, C.; Dice, C. et al. Inosine augments the effects of a Novo receptor blocker and of environmental enrichment to restore skilled forelimb use after stroke. J Neurosci 2011, 31, pp. 5977-5988. https://doi.org/10.1523/jneurosci.4498-10.2011
Moore, T. L.; Pessina, M. A.; Finklestein, S. P. et al. Inosine enhances recovery of grasp following cortical injury to the primary motor cortex of the rhesus monkey. Restor Neurol Neurosci 2016, 34, pp. 827-848. https://doi.org/10.3233/rnn-160661
Dachir, S.; Shabashov, D.; Trembovler, V. et al. Inosine improved functional recovery after experimental traumatic brain injury. Brain Res 2014, 1555, pp. 78-88. https://doi.org/10.1016/j.brainres.2014.01.044
Spitsin, S.; Markowitz, C. E.; Zimmerman, V. et al. Modulation of serum uric acid levels by inosine in patients with multiple sclerosis does not affect blood pressure. J Hum Hypertens 2010, 24, pp. 359-362. https://doi.org/10.1038/jhh.2009.83
Junqueira, S. C.; Dos Santos Coelho, I.; Lieberknecht, V. et al. Inosine, an Endogenous Purine Nucleoside, Suppresses Immune Responses and Protect Mice from Experimental Autoimmune Encephalomyelitis: a Role for A2A Adenosine Receptor. Mol Neurobiol 2017, 54, pp. 3271-3285. https://doi.org/10.1007/s12035-016-9893-3
Schwarzschild, M. A.; Macklin, E. A.; Ascherio, A. Urate and neuroprotection trials. Lancet Neurol 2014, 13, p. 758. https://doi.org/10.1016/s1474-4422(14)70138-3
Hasko, G.; Sitkovsky, M. V.; Szabo, C. Immunomodulatory and neuroprotective effects of inosine. Trends Pharmacol Sci 2004, 25, pp. 152-157. https://doi.org/10.1016/j.tips.2004.01.006
Wu, M. M.; You, S. W.; Hou, B. et al. Effects of inosine on axonal regeneration of axotomized retinal ganglion cells in adult rats. Neurosci Lett 2003, 341, pp. 84-86. https://doi.org/10.1016/s0304-3940(03)00151-4
Liu, F.; Yao, L.; Yuan, J. et al. Protective effects of inosine on urinary bladder function in rats with partial bladder out obstruction. Urology 2009, 73, pp. 1417-1422. https://doi.org/10.1016/j.urology.2008.10.032
Benowitz, L. I.; Jing, Y.; Tabibiazar, R. et al. Axon autgrowth is regulated by an intracellular purine-sensitive mechanism in retinal ganglion cells. J Biol Chem 1998, 273, pp. 29626-29634. https://doi.org/10.1074/jbc.273.45.29626
Ruhal, P.; Dhingra, D. Inosine improves cognitive function and decreases aging-induced oxidative stress and neuroinflammation in aged female rats. Inflammopharmacology 2018. https://doi.org/10.1007/s10787-018-0476-y.
Dowdall, J. F.; Winter, D. C.; Bouchier-Hayes, D. J. Inosine modulates gut barrier dysfunction and end organ damage in a model of ischemia-reperfusion injury. J Surg Res 2002, 108, pp. 61-68. https://doi.org/10.1006/jsre.2002.6519
Becker, B. F. Towards the physiological function of uric acid. Free Radic Biol Med 1993, 14, pp. 615-631. https://doi.org/10.1016/0891-5849(93)90143-i
Yasutake, Y.; Tomita, K.; Higashiyama, M. et al. Uric acid ameliorates indomethacin-induced enteropathy in mice through its intioxidant activity. J Gastroenterol Hepatol 2017, 32, pp. 1839-1845. https://doi.org/10.1111/jgh.13785
de Lau, L. M.; Koudstaal, P. J.; Hofman, A.; Breteler, M. M. Serum uric acid levels and the risk of Parkinson`s disease. Ann Neurol 2005, 58, pp. 797-800. https://doi.org/10.1002/ana.20663
Paganoni, S.; Schwarzschild, M. A. Urate as a Marker of Risk and Progression of Neurodegenerative Disease. Neurotherapeutics 2017, 14, pp. 148-153. https://doi.org/10.1007/s13311-016-0497-4
Schwarzschild, M. A.; Ascherio, A.; Beal, M. F. et al. Inosine to increase serum and cerebrospinal fluid urate in Parkinson disease: a randomized clinical trial. JAMA Neurol 2014, 71, pp. 141-150. https://doi.org/10.1001/jamaneurol.2013.5528
Crotty, G. F.; Ascherio, A.; Schwarzschild, M. A. Targeting urate to reduce oxidative stress in Parkinson disease. Exp Neurol 2017, 298, pp. 210-224. https://doi.org/10.1016/j.expneurol.2017.06.017
Wei, C. J.; Li, W.; Chen, J. F. Normal and abnormal function of adenosine receptors in the central nervous system revealed by genetic knockout studies. Biochim Biophys Acta 2011, 1808, pp. 1358-1379. https://doi.org/10.1016/j.bbamem.2010.12.018
Viegas, T. X.; Omura, G. A.; Stoltz, R. R.; Kisicki, J. Pharmacokinetics and pharmacodynamics of peldesine (BCX-34), a purine nucleoside phosphorylase inhibitor, following single and multiple oral doses in healthy volunteers. J Clin Pharmacol 2000, 40, pp. 410-420. https://doi.org/10.1177/00912700022008991
Muto, J.; Lee, H.; Uwaya, A. et al. Oral administration of inosine produces antidepressant-like effects in mice. Sci Rep 2014, 4, p. 4199. https://doi.org/10.1038%2Fsrep04199
Nascimento, F. P.; Macedo-Junior, S. J.; Pamplona, F. A. et al. Adenosine A1 receptor-dependent antinociception induced by inosine in mice: pharmacological, genetic and biochemical aspect. Mol Neurobiol 2015, 51, pp. 1368-1378. https://doi.org/10.1007/s12035-014-8815-5
Iwaki, H.; Ando, R.; Miyaue, N. et al. One year safety and efficacy of inosine to increase the serum urate levels for patients with Parkinson’s disease in Japan. J Neurol Sci 2017, 383, pp. 75-78. https://doi.org/10.1016/j.jns.2017.10.030
Chen, X.; Wu, G.; Schwarzschild, M. A. Urate in Parkinson’s disease: more than a biomarker? Curr Neurol Neurosci Rep 2012, 12, pp. 367-375. https://doi.org/10.1007/s11910-012-0282-7
Spitsin, S.; Koprowski, H. Role of uric acid in multiple sclerosis. Curr Top Microbiol Immunol 2008, 318, pp. 325-342. https://doi.org/10.1007/978-3-540-73677-6_13
Cipriani, S.; Bakshi, R.; Schwarzschild, M. A. Protection by inosine in a cellular model of Parkinson’s disease. Neuroscience 2014, 274, pp. 242-249. https://doi.org/10.1016/j.neuroscience.2014.05.038