Therapeutic hypercapnia. Review

  • Denis Tolstun D. F. Chebotarev Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine
  • Khachik Muradian D. F. Chebotarev Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine
  • Vladislav Bezrukov D. F. Chebotarev Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine
Keywords: hypercapnia; hypoxia; cancer; diabetes; neuroprotection; longevity; carboxytherapy; ischemia; stroke

Abstract

In recent years, interest in hypercapnia and its practical applications has grown significantly. An analysis of literature data shows a wide range of systemic and local applications. Due to its powerful effect on blood circulation, vascular elasticity, activation of angiogenesis, and inhibition of pro-inflammatory factors, hypercapnia is already used in dermatology, phlebology, and therapy. Wide opportunities open up for practical use in neurology, given the powerful neuroprotective effect of carbon dioxide, which not only increases tolerance to ischemia, preventing the development of diseases but can also become a tool for the treatment of stroke and heart attack. The antitumor effect and the ability to reduce the level of metabolic processes also make hypercapnia an attractive geroprotector that will help in solving the issue of life extension.

Author Biographies

Denis Tolstun, D. F. Chebotarev Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine

PhD (Biology), Leading Researcher of the of the Department of Biology of Aging and Experimental Life Extension

Khachik Muradian, D. F. Chebotarev Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine

DSc (Biology), Chief Researcher of of the Department of Biology of Aging and Experimental Life Extension

Vladislav Bezrukov, D. F. Chebotarev Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine

MD, DSc (Medicine), Prof., Full Member (Academician) of the NAMS of Ukraine, Director of the State Institution “D. F. Chebotarev Institute of Gerontology NAMS of Ukraine”, Head of the Department of Biology of Aging and Experimental Life Extension

References

Varlaro, V.; Manzo, G.; Mugnaini, F.; Bisacci C.; Fiorucci, P. et al. Carboxytherapy: effects on microcirculation and its use in the treatment of severe lymphedema. Acta Phlebologica 2007, 8, 79–91.

Prakash, K.; Chandran, D. S.; Khadgawat, R.; Jarual,A. K.; Deepak, K.K. Correction for blood pressure improves correlation between cerebrovascular reactivity assessed by breath holding and 6% CO2 breathing. J Stroke Cerebrovasc Dis 2014, 23, 630–635. https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.06.003

Drogovoz, S. M.; Shtrigol, S. Yu.; Kononenko, A. V.; Zupanets, M. V.; Shtroblya, A. L. The mechanism of action of carboxytherapy. Pharmacology and medicinal toxicology 2016, 6, 51. (in Ukrainian)

Jensen, F. B. Red blood cell pH, the Bohr effect, and other oxygenation–linked phenomena in blood O2 and CO2 transport. Acta Physiol Scand 2004, 182, 3, 215–227.]. https://doi.org/10.1111/j.1365-201x.2004.01361.x

Timchenko, A. N.; Tolstun, D. A.; Muradian, H. K.; Bezrukov, V. V. Midnight siesta and circadian rhythms of related metabolic and behavioral variables in aging. J Vet Sci Med Diagn 2014, 3, 3. https://doi.org/10.4172/2325-9590.1000143

Tolstun, D. A.; Knyazer, A.; Tushynska, T. V.; Dubiley,T. A.; Bezrukov, V. V. et al. Metabolic remodelling of mice by hypoxic–hypercapnic environment: imitating the naked mole–rat. Biogerontology 2020, 21, 2, 143–153. https://doi.org/10.1007/s10522–019–09848–9

Lindinger, M, I.; Heigenhauser, G. J. Effects of gas exchange on acid-base balance. Compr Physiol 2012, 2, 2203–2254. https://doi.org/10.1002/cphy.c100055

Puente–Sanchez, F.; Olsson, S.; Gomez–Rodriguez, M.; Souza–Egipsy, V.; Altamirano–Jeschke, M.; Amils, R. Solar Radiation Stress in Natural Acidophilic Biofilms of Euglena mutabilis Revealed by Metatranscriptomics and PAM Fluorometry. Protist 2016, 167, 1, 67–81. http://dx.doi.org/10.1016/j.protis.2015.12.003

Muradian, K. "Pull and push back" concepts of longevity and life span extension. Biogerontology 2013, 14, 6, 687–691. https://doi.org/10.1007/s10522-013-9472-1

Babikian, V.; Wechsler, L. Transcranial Doppler Ultrasonography. Mosby–Year Book, Inc.: UK, 1993, p. 323.

El–Betany, A. M. M.; Behiry, E. M.; Gumbleton, M.; Harding, K. G. Humidified Warmed CO2 Treatment Therapy Strategies Can Save Lives With Mitigation and Suppression of SARS–CoV–2 Infection: An Evidence Review. Front Med (Lausanne) 2020, 7, 594295. https://doi.org/10.3389/fmed.2020.594295. PMID: 33425942; PMCID: PMC7793941.

Dries, D. J. Permissive hypercapnia. J Trauma 1995, 39, 5, 984–989. https://doi.org/10.1097/00005373–199511000–00028

Bigatello, L. M.; Patroniti, N.; Sangalli, F. Permissive hypercapnia. Curr Opin Crit Care 2001, 7, 1, 34–40. https://doi.org/10.1097/00075198–200102000–00006. PMID: 11373509.

Rogovik, A.; Goldman, R. Permissive hypercapnia. Emerg Med Clin North Am 2008, 26, 4, 941–952. https://doi.org/10.1016/j.emc.2008.08.002. PMID: 19059093.

O'Croinin, D.; Ni Chonghaile, M.; Higgins, B.; Laffey, J. G. Bench–to–bedside review: Permissive hypercapnia. Crit Care 2005, 9, 1, 51–59. https://doi.org/10.1186/cc2918.

Kavanagh BP, Laffey JG. Hypercapnia: permissive and therapeutic. Minerva Anestesiol 2006, 72, 6, 567–76.

Nichol, A. D.; O'Cronin, D. F.; Naughton, F.; Hopkins, N.; Boylan, J.; McLoughlin, P. Hypercapnic acidosis reduces oxidative reactions in endotoxin-induced lung injury. Anesthesiology 2010, l, 113, 1, 116–25. https://doi.org/10.1097/ALN.0b013e3181dfd2fe

Nomura, F.; Aoki, M.; Forbess, J. M.; Mayer, J. E. Jr. Effects of hypercarbic acidotic reperfusion on recovery of myocardial function after cardioplegic ischemia in neonatal lambs. Circulation 1994, 90, 5, 2, II321–II327.

Barth, A.; Bauer, R.; Gedrange, T.; Walter, B.; Klinger, W.; Zwiener, U. Influence of hypoxia and hypoxia/hypercapnia upon brain and blood peroxidative and glutathione status in normal weight and growth–restricted newborn piglets. Exp Toxicol Pathol 1998, 50, 4–6, 402–410. https://doi.org/10.1016/S0940–2993(98)80026–2

Xu, L.; Gao, M.; Yao, T. Mechanical ventilation therapy with permissive hypercapnia on ARDS. Zhonghua Jie He He Hu Xi Za Zhi 1997, 20, 2, 72–75. (in Chinese)

Bonventre, J. V.; Cheung, J. Y. Effects of metabolic acidosis on viability of cells exposed to anoxia. Am J Physiol 1985, 249, 1, 1, 149–159. https://doi.org/10.1152/ajpcell.1985.249.1.C149

Simchowitz, L. Intracellular pH modulates the generation of superoxide radicals by human neutrophils. J Clin Invest 1985, 76, 3, 1079–1089. https://doi.org/10.1172/JCI112061

Laffey, J. G.; Tanaka, M.; Engelberts, D.; Luo, X.; Yuan, S. et al. Therapeutic hypercapnia reduces pulmonary and systemic injury following in vivo lung reperfusion. Am J Respir Crit Care Med 2000, 162, 6, 2287–2294. https://doi.org/10.1164/ajrccm.162.6.2003066

Zhou, Q.; Cao, B.; Niu, L.; Cui, X.; Yu, H. et al. Effects of permissive hypercapnia on transient global cerebral ischemia–reperfusion injury in rats. Anesthesiology 2010, 112, 2, 288–297. https://doi.org/10.1097/ALN.0b013e3181ca8257

Thome, U. H.; Carlo, W. A. Permissive hypercapnia. Semin Neonatol 2002, 7, 5, 409–419. https://doi.org/10.1053/siny.2002.0135

De Smet, H. R.; Bersten, A. D.; Barr, H.A.; Doyle, I. R. Hypercapnic acidosis modulates inflammation, lung mechanics, and edema in the isolated perfused lung. J Crit Care 2007, 22, 4, 305–13. https://doi.org/10.1016/j.jcrc.2006.12.002

Galganska, H.; Jarmuszkiewicz, W.; Galganski, L. Carbon dioxide inhibits COVID–19–type proinflammatory responses through extracellular signal–regulated kinases 1 and 2, novel carbon dioxide sensors. Cell Mol Life Sci 2021, 78, 24, 8229–8242. https://doi.org/10.1007/s00018–021–04005–3

World Health Organization. The top 10 causes of death. 2022. URL: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

Shatilo, V. B.; Korkushko, O. V.; Ischuk, V. A.; Downey, H. F. Serebrovskaya, T. V. Effects of intermittent hypoxia training on exercise performance, hemodynamics, and ventilation in healthy senior men. High Alt Med Biol 2008, 9, 1, 43–52. https://doi.org/10.1089/ham.2007.1053

Rybnikova, E.; Gluschenko, T.; Tulkova, E.; Churilova, A.; Jaroshevich, O. et al. Preconditioning induces prolonged expression of transcription factor pCREB and NF–xB in the neocortex of rats before and following severe hypobaric hypoxia. Neurochem 2008, 106, 3, 1450–1458. https://doi.org/10.1111/j.1471– 4159.2008.05516.x

Brucklacher, R. M.; Vannucci, R. C.; Vannucci, S. J. Hypoxic preconditioning increases brain glycogen and delays energy depletion from hypoxia-ischemia in the immature rat. Dev Neurosci 2002, 24, 5, 411–417. https://doi.org/10.1159/000069051

Vannucci, S. J.; Back, S. A. The Vannucci Model of Hypoxic–Ischemic Injury in the Neonatal Rodent: 40 years later. Dev Neurosci 2022, https://doi.org/10.1159/000523990

Meyerson, F. Z.; Gomazkov, O. A.; Shimkovich, M. V. Preventive effect of adaptation to high-altitude hypoxia on the development of ischemic myocardial necrosis. Cardiology 1972, 10, 37—43. (in Russian)

Nedugova, N. P. Adaptive changes in hemodynamics in patients with neurocirculatory dystonia during a hypoxic test under the influence of hypoxic training. Nizhegor Med J 2000, 3, 43—47. (in Russian)

Korkushko, O. V.; Shatilo, V. B.; Ishchuk, V. A. Effectiveness of intermittent normobaric hypoxic training in elderly patients with coronary artery disease. Adv Gerontol 2010, 23, 3, 476–482. (in Russian)

Berezovsky, V. A.; Volobuev, M. I. Oxygen deficiency training as a method of optimizing mental performance. Mat. VΙΙ international sympos. "Ecological and physiological problems of adaptation": Moscow, 1998. (in Russian)

Boychenko, A. Kh. On the question of the effectiveness of interval hypoxic training in patients with cerebral palsy. International Journal of Physiology and Pathophysiology 2000, 46, 2, 24–29. (in Russian)

Ivanov, A. O.; Sapova, N. I.; Aleksandrov, N. I.; Kosenkov, N. I. The use of hypoxic training to improve the physical performance of healthy individuals. Human Physiology 2001, 27, 2, 89–95. (in Russian)

Lin, V. W.; Brosgol, Y.; Homel, P.; Hsu, E.; Ali, N.; Chatterjee, M.; Pavlakis, S. G. Young Patients with Diabetes Have Decreased Cerebrovascular Reactivity Under Hypercapneic Conditions. Pediatr Neurol 2015, 53, 6, 498–502. https://doi.org/10.1016/j.pediatrneurol.2015.08.019

Tao, T.; Liu, Y.; Zhang, J.; Xu, Y.; Li, W.; Zhao, M. Therapeutic hypercapnia improves functional recovery and attenuates injury via antiapoptotic mechanisms in a rat focal cerebral ischemia/reperfusion model. Brain Research 2013, 1533, 52–62. https://doi.org/10.1016/j.brainres.2013.08.014

Obrenovitch, T. P. Molecular Physiology of Preconditioning–Induced Brain Tolerance to Ischemia. Physiological Reviews 2008, 88, 1, 211–247. https://doi.org/10.1152/ physrev.00039.2006

Bradley, M. E.; Leith, D. E. Ventilatory muscle training and the oxygen cost of sustained hyperpnea. J Appl Physiol Respir Environ Exerc Physiol 1978, 45, 6, 885–892. https://doi.org/10.1152/jappl.1978.45.6.885

Tregub, P.; Kulikov, V.; Motin, Y.; Bespalov, A.; Osipov, I. Combined exposure to hypercapnia and hypoxia provides its maximum neuroprotective effect during focal ischemic injury in the brain. J Stroke Cerebrovasc Dis 2015, 24, 2, 381–387. https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.09.003

Tregub, P.; Kulikov, V.; Bespalov, A. Tolerance to acute hypoxia maximally increases in case of joint effect of normobaric hypoxia and permissive hypercapnia in rats. Pathophysiology 2013, 20, 3, 165–170. https://doi.org/10.1016/j. pathophys.2013.09.001

Kulikov, V. P.; Tregub, P. P.; Kovzelev, P. D.; Dorokhov, E. A.; Belousov, A. A. Hypercapnia is an alternative to hypoxia signaling stimulus for increasing HIF-1a and erythropoietin in the brain. Pathological physiology and experimental therapy 2015, 3, 34–37. (in Russian)

Bespalov, A. G.; Tregub, P. P.; Kulikov, V. P.; Piyanzin, A. I.; Belousov, A. A. The role of VEGF, HSP 70, and protein S 100B in the mechanisms of hypercapnia potentiation of the neuroprotective effect of hypoxia. Pathological physiology and experimental therapy 2014, 57, 2, 24–27. (in Russian)

Tregub, P. P.; Kulikov, V. P.; Stepanova, L. A.; Zabrodina, A. S.; Nagibaeva, M. E. The role of adenosine A1 receptors and mitochondrial K + ATP channels in the mechanism of increasing resistance to acute hypoxia with combined exposure to hypoxia and hypercapnia. Pathological physiology and experimental therapy 2014, 58, 4, 48–52. (in Russian)

Tregub, P. P.; Malinovskaya, N. A.; Kulikov, V. P.; Salmina, A. B.; Nagibaeva, M. E., Zabrodina, A. S. Apoptosis inhibition is a potential mechanism for increasing brain ischemic tolerance under combined exposure to hypercapnia and hypoxia. Bulletin of experimental biology and medicine 2016, 161, 5, 606–609. (in Russian)

Timchenko, A. N.; Utko, N. A.; Muradian, K. K. Elevated content of the atmospheric oxygen decreases and carbon dioxide increases the life span of Drosophila melanogaster. Probl Aging Longev 2008, 17, 2, 230–239. (in Russian)

Goldman, B. D.; Goldman, S. L.; Lanz, T.; Magaurin, A.; Maurice, A. Factors influencing metabolic rate in naked mole–rats (Heterocephalus glaber). Physiol. Behav 1999, 66, 3, 447–459. https://doi.org/10.1016/s0031-9384(98)00306-0

Spinks, A. C.; Bennett, N. C.; Faulkes, C. G.; Jarvis, J. U. Circulating LH levels and the response to exogenous GnRH in the common mole-rat: implications for reproductive regulation in this social, seasonal breeding species. Horm Behav 2000, 37, 3, 221–228. https://doi.org/10.1006/hbeh.2000.1576. PMID: 10868485.

Grimes, K. M.; Barefield, D. Y.; Kumar, M.; McNamara, J. W.; Weintraub, S. T. et al. The naked mole–rat exhibits an unusual cardiac myofilament protein profile providing new insights into heart function of this naturally subterranean rodent. Pflugers Arch 2017, 469, 12, 1603–1613. https://doi.org/10.1007/s00424-017-2046-3

Xiao, B.; Li, L.; Xu, C.; Zhao, S.; Lin, L. et al. Transcriptome sequencing of the naked mole rat (Heterocephalus glaber) and identification of hypoxia tolerance genes. Biol Open 2017, 15, 6, 12, 1904–1912. https://doi.org/10.1242/bio.028548

Singer, M. A. Insights into biomedicine from animal adaptations. Compr Physiol 2011, 1, 4, 2063–81. https://doi.org/10.1002/cphy.c100080

Stoll, E. A.; Karapavlovic, N.; Rosa, H.; Woodmass, M.; Rygiel, K. et al. Naked mole–rats maintain healthy skeletal muscle and Complex IV mitochondrial enzyme function into old age. Aging (Albany NY) 2016, 8, 12, 3468–3485. https://doi.org/10.18632/aging.101140

Seluanov, A.; Gladyshev, V. N.; Vijg, J.; Gorbunova, V. Mechanisms of cancer resistance in long–lived mammals. Nat Rev Cancer 2018, 5. https://doi.org/10.1038/s41568–018–0004–9

Buffenstein, R. Negligible senescence in the longest living rodent, the naked mole–rat: insights from a successfully aging species. J Comp Physiol B 2008, 178, 4, 439–445. https://doi.org/10.1007/s00360–007–0237–5.

Nathaniel, T. I.; Otukonyong, E.; Abdellatif, A.; Soyinka, J. O. Effect of hypoxia on metabolic rate, core body temperature, and c–fos expression in the naked mole rat. Int J Dev Neurosci 2012, 30, 6, 539–544. https://doi.org/10.1016/j.ijdevneu.2012.04.004

Lewis, K. N.; Rubinstein, N. D.; Buffenstein, R. A window into extreme longevity; the circulating metabolomic signature of the naked mole–rat, a mammal that shows negligible senescence. Geroscience 2018, https://doi.org/10.1007/s11357–018–0014–2.

Kim, E. B.; Fang, X.; Fushan, A. A.; Huang, Z.; Lobanov, A. V. Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 2011, 479, 7372. 223–227. https://doi.org/10.1038/nature10533

Honda, S.; Ishii, N.; Suzuki, K.; Matsuo, M. Oxygen–dependent perturbation of life span and aging rate in the nematode. J Gerontol 1993, 48, 57–61. https://doi.org/10.1093/geronj/48.2.b57

Feng, J.; Bussiеre, F.; Hekimi, S. Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 2001, 1, 633–644. https://doi.org/10.1016/s1534-5807(01)00071-5

Forgan, L. G.; Forster, M. E. Oxygen–dependence of metabolic rate in the muscles of craniates. J Comp Physiol B 2010, 180, 715–729. https://doi.org/10.1007/s00360-010-0455-0

Ruby, J. G.; Smith, M.; Buffenstein, R. Naked Mole–Rat mortality rates defy gompertzian laws by not increasing with age. Elife 2018, 7, e31157. https://doi.org/10.7554/elife.31157

Muradian, K. K. Artificial atmosphere, rejuvenation, and longevity. Probl Aging Longevity 2008, 17, 457–477. (in Russian).

Muradian, K. K.; Vaiserman, А. М. Atmosphere, longevity, and metabolism. Life Extension. Healthy Aging and Longevity. Springer 2015, 285–299.

Smirnov, K. V.; Smirnova, Yu. V.; Kulikov, V. P.; Nazarkina, O. M. Respiratory hypercapnic–hypoxic training is an effective component of complex therapy of polyneuropathy in children with diabetes type 1. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova 2018, 118, 3, 32‑38. https://doi.org/10.17116/jnevro20181183132–38. (in Russian)

Shigemura, M.; Lecuona, E.; Angulo, M.; Dada, L. A.; Edwards, M. B. et al. Elevated CO2 regulates the Wnt signaling pathway in mammals, Drosophila melanogaster and Caenorhabditis elegans. Sci Rep 2019, 9, 1, 18251. https://doi.org/10.1038/s41598–019–54683–0

Walker, J. C. Carbon dioxide on the early earth. Orig Life Evol Bioph 1985, 16, 117–127. https://doi.org/10.1007/bf01809466

Kurbel, S. Animal evolution and atmospheric pO2: is there a link between gradual animal adaptation to terrain elevation due to ural orogeny and survival of subsequent hypoxic periods? Theor Biol Med Model 2014, 11, 11–47. https://doi.org/10.1186/1742-4682-11-47

Mills, D. B.; Ward, L. M.; Jones, C.; Sweeten, B.; Forth, M; Treusch, A. H.; Canfield, D. E. Oxygen requirements of the earliest animals. Proc Natl Acad Sci U S A 2014, 111, 4168–4172. https://doi.org/10.1073/pnas.1400547111

Zhang, J.; Tang, D.; Chen, J.; Wang, S.; Gao, J.; Ye, N.; Wang, D. Lethal effect of a hyperthermic CO₂ pneumoperitoneum on gastric cancer cells. Clin Res Hepatol Gastroenterol 2014, 38, 4, 520–527. https://doi.org/10.1016/j.clinre.2013.12.011

Wang, J.; Wang, Z.; Mo, Y.; Zeng, Z.; Wei, P.; Li, T. Effect of hyperthermic CO2–treated dendritic cell-derived exosomes on the human gastric cancer AGS cell line. Oncol Lett 2015, 10, 1, 71–76. https://doi.org/10.3892/ol.2015.3155

Zhou, H. M.; Feng, B.; Zhao, H. C.; Zheng, M. H. Antitumor effects of hyperthermic CO2 pneumoperitoneum on human gastric cancer cells. Asian Pac J Cancer Prev 2012, 13, 1, 117–22. https://doi.org/10.7314/apjcp.2012.13.1.117

Lv, H.; Zhou, T.; Rong, F. Proteomic analysis of the influence of CO2 pneumoperitoneum in cervical cancer cells. J Cancer Res Ther 2021, 17, 5, 1253–1260. https://doi.org/10.4103/jcrt.jcrt_638_21

Manzo, G.; Villeggia, P.; Varlaro, V. La carbossiterapiautilizzata in situazionicliniche di linfostasi a caricodegli arti inferiori: valutazionedeglieffettimendiantelinfoscintigrafia, Abstract Book XXVII Congresso Nazionale dellaSocietàItaliana di MedicinaEstetica; anno 30, n. 1. Salus Internazionale: Roma, 2006. (in Italian)

Zenker, S. A new approach in fat reduction therapies: carboxytherapy. Kosmetische Medizin 2010, 47, 11–28.

Koutna, N. Carboxytherapy in Aesthetic Medice. Springer–Verlag: Berlin, 2011, 547–576.

Curri, S. B.; Bombardelli, E. Local lipodystrophy and districtual microcirculation: Proposed etiology and therapeutic management. Cosmet Toilet 1994, 109, p.51.

Albergati, F.; Parassoni, L.; Lattarulo, P.; Varlaro, V.; Curri, S. B. Carbossiterapia e vasomotion: comparazione tra immagini videocapillaroscopiche e referti doppler laser flow dopo somministrazione di anidride carbonica; anno 27, n. 1. Salus Internazionale: Roma, 1997. (in Italiano)

Savin, E.; Bailliart, O.; Bonnin, P.; Bedu, M.; Cheynel, J.; Coudert, J.; Jean–Paul Martine, J. P. Vasomotor effects of transcutaneous CO2 stage II periphearal occlusive arterial disease. Angiology 1995, 46, p. 785. https://doi.org/10.1177%2F000331979504600904

Sinozić, T.; Kovacević, J. Karboksiterapija - potporna terapija u lijecenju kronicnih rana. Acta Med Croatic 2013, 67, 1, 137-141. (in Croatian)

Yang, L. L.; Ji, X. P.; Liu, Z.; Liu, G.; Guan, F. L. Effects of hypercapnia on nuclear factor–kappaB and TNF–alpha in acute lung injury models. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2004, 20, 4, 396–400. (in Chinese)

Kimura, D.; Totapally, B. R.; Raszynski, A.; Ramachandran, C.; Torbati, D. The effects of CO2 on cytokine concentrations in endotoxin–stimulated human whole blood. Crit Care Med 2008, 36, 10, 2823–2827. https://doi.org/10.1097/CCM.0b013e318186f556. PMID: 18766096.

Gao, W.; Liu, D. D.; Li, D.; Cui, G. X. Effect of Therapeutic Hypercapnia on Inflammatory Responses to One–lung Ventilation in Lobectomy Patients. Anesthesiology 2015, 122, 6, 1235–1252. https://doi.org/10.1097/ALN.0000000000000627

Ding, H.; Li, Y.; Li, X.; Liu, X.; Chen, S.; Liu, M.; Zeng, H. Treatment with 7% and 10% CO2 enhanced expression of IL–1β, TNF–α, and IL–6 in hypoxic cultures of human whole blood. J Int Med Res 2020, 48, 4, 300060520912105. https://doi.org/10.1177/0300060520912105

Published
2022-08-28
How to Cite
Tolstun, D., Muradian, K., & Bezrukov, V. (2022). Therapeutic hypercapnia. Review. Ageing and Longevity, 3(3), 101-113. Retrieved from http://aging-longevity.org.ua/journal-description/article/view/60
Section
Статьи