Estimating biological age of the autonomic regulation cardio-vascular system

  • Anatoly Pisaruk D. F. Chebotarev Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine
  • Ludmila Mekhova D. F. Chebotarev Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine
  • Ivanna Antoniuk-Shcheglova D. F. Chebotarev Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine
  • Ludmila Pisaruk D. F. Chebotarev Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine
  • Nataly Koshel D. F. Chebotarev Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine
  • Stefan Ivanov D. F. Chebotarev Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine
Keywords: biological age; heart rate variability

Abstract

Abstract. Based on our data on age-related changes in blood pressure, ECG, and HRV, we developed a method for assessing the cardiovascular system's biological (functional) age. We set ourselves the task of finding a simple non-invasive method for the integral assessment of the state of the cardiovascular system, which allows us to quantify the degree of age-related changes in this system. The essence of the method lies in the fact that the BA of the cardiovascular system is calculated according to the indicators of BP, QT and HRV. The study included 108 practically healthy people aged from 20 to 90 years. The formula for calculating BA was obtained by multiple stepwise regression. The multiple correlation between biological age and chronological is high (r = 0.895; p <0.00001). The average absolute value of the error of BA calculation, in this case, is 5.19 years. Thus, the method for assessing the rate of ageing developed by us has high accuracy and can be used to assess the risk of developing age-dependent cardiovascular pathology. The implementation of the proposed method will allow not only to identify people with the risk of developing pathology but also to assess the effectiveness of treatment, prophylactic and rehabilitation measures.

Author Biographies

Anatoly Pisaruk, D. F. Chebotarev Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine

DSc (Medicine), Head of the Laboratory for Mathematical Modeling of Aging Processes

Ludmila Mekhova, D. F. Chebotarev Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine

PhD  (Medicine),  Senior  Researcher  of  the  Laboratory  for  Mathematical  Modeling  of  Aging  Processes

Ivanna Antoniuk-Shcheglova , D. F. Chebotarev Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine

DSc (Medicine), Leading Researcher of the Department of Clinical Physiology and Pathology of Internal Organs

Ludmila Pisaruk, D. F. Chebotarev Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine

Senior Researcher of  the  Laboratory  for  Mathematical  Modeling  of  Aging  Processes

Nataly Koshel, D. F. Chebotarev Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine

PhD (Biology), Researcher of the Laboratory for Mathematical Modeling of Aging Processes

Stefan Ivanov, D. F. Chebotarev Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine

Senior Researcher of  the  Laboratory  for  Mathematical  Modeling  of  Aging  Processes

References

Murabito, J.M.; Zhao, Q.; Larson, M.G.; Rong, J.; Lin, H.; Benjamin, E.J. et al. Measures of biologic age in a community sample predict mortality and age-related disease: the Framingham offspring study. J Gerontol Ser A Biol Sci Med Sci 2018, 73, 757–762. https://doi.org/10.1093/gerona/glx144

Jia, L.; Zhang, W.; Chen, X. Common methods of biological age estimation. Clin Interv Aging 2017, 12, 759–772. https://doi.org/10.2147/CIA.S134921.

Mamoshina, P.; Kochetov, K.; Putin, E.; Cortese, F.; Aliper, A.; Lee, W.S. et al. Population-specific biomarkers of human ageing: a big data study using South Korean, Canadian and Eastern European patient populations. J Gerontol Ser A 2018, 1, 1–9. https://doi.org/10.1093/gerona/gly005

Sebastian,i P.; Thyagarajan, B.; Sun, F.; Schupf, N.; Newman, A.B.; Montano, M. et al. Biomarker signatures of aging. Aging Cell 2017, 16, 329–338. https://doi.org/10.1111/acel.12557

Tsuji, H.; Venditti, F.J.; Jr, Manders, E.S.; Evans, J.C.; Larson M.G.; Feldman, C.L.; Levy, D. Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study. Circulation 1994, 90, 878-83. https://doi.org/10.1161/01.cir.90.2.878.

Park, S.B.; Lee, B.C.; Jeong, K.S. Standardized tests of heart rate variability for autonomic function tests in healthy Koreans. Int J Neurosci 2007, 117, 1707-1717. https://doi.org/10.1080/00207450601050097.

Tsuji, H.; Venditti, F.J.; Jr, Manders, E.S.; Evans, J.C.; Larson, M.G.; Feldman, C.L.; Levy, D. Determinants of heart rate variability. J Am Coll Cardiol 1996, 28, 1539-1546. https://doi.org/10.1016/s0735-1097(96)00342-7.

Agelink, M.W.; Malessa, R.; Baumann, B.; Majewski, T.; Akila, F.; Zeit, T.; Ziegler, D. Standardized tests of heart rate variability: normal ranges obtained from 309 healthy humans, and effects of age, gender, and heart rate. Clin Auton Res 2001, 11, 99-108. https://doi.org/10.1007/BF02322053.

Kuch, B.; Hense, H.W.; Sinnreich, R.; Kark, J.D.; von Eckardstein, A.; Sapoznikov, D.; Bolte, H.D. Determinants of short-period heart rate variability in the general population. Cardiology 2001, 95, 131-138. https://doi.org/10.1159/000047359.

Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability. Stadards of measurement, physiological interpretation, and clinical use. Eur Heart J 1996, 17, 354-81.

Pisaruk, A.V. A simple method for correction of the systematic error in calculating biological age by the multiple regression equation. Ageing and longevity 2021, 2, 11-16. https://doi.org/10.47855/jal9020-2021-1-2

Published
2022-02-23
How to Cite
Pisaruk, A., Mekhova, L., Antoniuk-Shcheglova , I., Pisaruk, L., Koshel, N., & Ivanov, S. (2022). Estimating biological age of the autonomic regulation cardio-vascular system . Ageing and Longevity, 3(1), 1-7. Retrieved from http://aging-longevity.org.ua/index.php/journal-description/article/view/42
Section
Статьи

Most read articles by the same author(s)