Assessment of the rate of human aging by clinical biochemical tests
Abstract
The aim of the study was the development of the accessible method for assessing the rate of human aging by laboratory biochemical parameters. There were examined 408 practically healthy people in the age from 20 to 80 years. There were determined 6 anthropometric and 14 laboratory biochemical parameters, characterizing carbohydrate and fat metabolism, liver and kidney functions. The use of stepwise multiple regression made it possible to select the most informative indicators and obtain an equation linking the age of the examined people with a number of anthropometric and metabolic indicators. The average absolute error in calculating age was 4.2 years. The method for assessing the rate of aging, developed by us, is highly accurate and can be used to assess the risk of developing of the age-dependent pathology.
References
Salthouse, T. A. Aging and measures of processing speed. Biol. Psychol. 2000, 1-3, pp. 35–54. doi: 10.1016/s0301-0511(00)00052-1
Cevenini, E.; Invidia, L.; Lescai, F.; Salvioli, S.; Tieri, P. et al. Human models of aging and longevity. Expert Opinion on Biological Therapy 2015, 8, pp. 1393–1405. doi: 10.1517/14712598.8.9.1393
Belsky,a D. W.; Caspic, A.; Houtsc, R.; Cohen, H. J.; Corcoran, D. L. et al. Quantification of biological aging in young adults. PNAS 2015, p. 27. doi: 10.1073/pnas.1506264112
Sprott, R. L. Biomarkers of aging and disease: introduction and definitions. Exp. Gerontol. 2010,.45, pp. 2–4. doi: 10.1016/j.exger.2009.07.008
Korkushko, O. V.; Khavynson, V. Kh.; Shatylo, V. B.; Antoniuk-Schehlova, Y. A. Peptydnyj heroprotektor yz epyfyza zamedliaet uskorennoe starenne pozhylykh liudej: rezul'taty 15-letneho nabliudenyia. Biulleten eksperym. byol.y medytsyny. 2011, 151, pp. 343-348.
Mitnitski, A. B.; Graham, J. E.; Mogilner, A. J.; Rockwood, K. Frailty, fitness and late-life mortality in relation to chronological and biological age. BMC Geriatr. 2002, 2, p. 1. doi: 10.1186/1471-2318-2-1
Morgan, E. L. Modeling the Rate of Senescence: Can Estimated Biological Age Predict Mortality More Accurately Than Chronological Age? Journals of Gerontology: Biological Sciences Cite journal as: J Gerontol A Biol Sci Med Sci. 2013, 68, pp. 667–674. doi:10.1093/gerona/gls233
Kasagi, F.; Yamada, M.; Sasaki, H.; Fujita, Sh. Biologic Score and Mortality Based on a 30-Year Mortality Follow-Up: Radiation Effects Research Foundation Adult Health Study. J. Gerontol. Biol. Sci. 2009, 64A, pp. 865–870. doi:10.1093/gerona/glp025
Burkle, A.; Moreno-Villanueva, M.; Bernhard, J.; Blasco, M.; Zondag, G. et al. MARK-AGE biomarkers of ageing. Mech. Ageing Dev. 2015, 151, pp. 2–12. doi: 10.1016/j.mad.2015.03.006
Moreno-Villanueva, M.; Capri, M.; Breusing, N.; Siepilmeyer, A.; Sevini, F. et al. MARK-AGE standard operating procedures (SOPs): A successful effort. Mech. Ageing Dev. 2015, 151, pp. 18–25. doi: 10.1016/ j. mad. 2015.03.007
Xia, X.; Chen, W.; McDermott, J.; Han, J-D. J. Molecular and phenotypic biomarkers of aging: Version 1. F1000 Res. 2017, 6, p. 860. doi: 10.12688/ f1000research. 10692.1
Krøll, J.; Saxtrup, O. On the use of regression analysis for the estimation of human biological age. Biogerontology. 2000, 1, pp. 363–368. doi: 10.1023/a:1026594602252
Caballero, F. F.; Soulis, G.; Engchuan, W.; Sanchez-Niubo, A.; Arndt, H. et al. Advanced analytical methodologies for measuring healthy ageing and its determinants, using factor analysis and machine learning techniques: the ATHLOS project. Sci Rep. 2017, 7, p. 43955. doi: 10.1038/srep43955
Korkushko, O. V.; Pisaruk, A. V.; Chyzhova, V. P. Estimation of human metabolic age using regression and neural network analysis. Zaporozhye medical journal. 2021, 23, pp. 60-64. doi: 10.14739/2310-1210.2021.1.224883
Ryden, L.; Standl, E.; Bartnik, M. et al. The Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC) and of the European Association for the Study of Diabetes (EASD). Eur. Heart J. 2007, 28, pp. 88–136.
Pisaruk, A. V. A simple method for correction of the systematic error in calculating biological age by the multiple regression equation. Aging and longevity 2021, 2, pp.11-16. doi: 10.47855/jal9020-2021-1-2