Influense of curcumin on lifespan if it is applied at the larval stage of drosophila melanogaster

  • Anatoly Pisaruk D. F. Chebotarev Institute of Gerontology NAMS of Ukraine
  • Natalya Koshel D. F. Chebotarev Institute of Gerontology NAMS of Ukraine
  • Ludmila Mekhova D. F. Chebotarev Institute of Gerontology NAMS of Ukraine
  • Oksana Zabuga D. F. Chebotarev Institute of Gerontology NAMS of Ukraine
  • Stephen Ivanov D. F. Chebotarev Institute of Gerontology NAMS of Ukraine
Keywords: Development; Life span; Curcumin; Drosophila

Abstract

Abstract. In this study we have applied the different doses of curcumin at the larval stages of a fruitfly Drosophila melanogaster and subsequently ivestigated its effect on the developmental duration and life expectancy of imago. It has been shown a 2-day delay in the hatching of the flies, which were developing in the medium containing 500 mM of curcumin. Exposure to curcumin significantly influenced on the average and maximum lifespan (ALS and MLS respectively) of all Drosofila in the study: ALS – F=13.01, p<0.001 for males and F=14.3, p<0.001 for females; MLS – F=35.9, p<0.001 for males and F=16.7, p <0.001 for females. Thus, the ALS in the males, which at the larval stage were kept in the medium containing 125 mM, 250 mM and 500 mM of curcumin, was significantly higher (p<0.001) comparing to the control. In females, such kind of significant increase in ALS has been shown at a dose of 500 mM of curcumin (p<0.001) in the medium during the developmental stage comparing to the control. In other words, the ALS of the imago has increased in correlation to the increase in the dose of curcumin applied at the developmental stage in males by 9%, 16%, 13%, and 23% and in females by 0%, 1%, 3%, 16% respectively. There has been also shown the sharp raise in MLS in both males and females, which at the larval stage were kept in the medium containing more than 125 mM of curcumin. To sum up we can assume that in this study consumption of curcumin at the larval stage of fruit flies significantly increased the developmental duration and life span of adult Drosophila, and this may demonstrate the effect of curcumin on the epigenetic programming of pace of life.

Author Biographies

Anatoly Pisaruk, D. F. Chebotarev Institute of Gerontology NAMS of Ukraine

DSc (Medicine), Head of the Laboratory for Mathematical Modeling of Aging Processes

Natalya Koshel, D. F. Chebotarev Institute of Gerontology NAMS of Ukraine

PhD (Biology), Leading Researcher of the Laboratory for Mathematical Modeling of Aging Processes

Ludmila Mekhova, D. F. Chebotarev Institute of Gerontology NAMS of Ukraine

PhD (Medicine), Senior Researcher of the Laboratory for Mathematical Modeling of Aging Processes

Oksana Zabuga, D. F. Chebotarev Institute of Gerontology NAMS of Ukraine

PhD(Biology),Senior Researcher of the Laboratory of Epigenetics

Stephen Ivanov, D. F. Chebotarev Institute of Gerontology NAMS of Ukraine

Junior Researcher of the Laboratory for Mathematical Modeling of Aging Processes

References

Comfort, A. In my beginning is my end. Lancet 1990, 336, 8722, p 1052. doi: 10.1016/0140-6736(90)92504-B

Hoffman, D. J.; Reynolds, R. M.; Hardy, D. B. Developmental origins of health and disease: current knowledge and potential mechanisms. Nutr Rev 2017, 75, 951–970. doi: 10.1093/nutrit/nux053

Block, T.; El-Osta, A. Epigenetic programming, early life nutrition and the risk of metabolic disease. Atherosclerosis 2017, 266, 31–40. doi:10.1016/j.atherosclerosis.2017.09.003

Aggarwal, B.B.; Sung, B. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends in Pharmacological Sciences 2009, 30, 85–94. Doi: 10.1016/j.tips.2008.11.002

Li, W.; Guo, Y.; Zhang, Ch.; Wu, R.; Yang, A. Yu. et al. Dietary phytochemicals and cancer chemoprevention: a perspective on oxidative stress, inflammation, and epigenetics. Chem Res Toxicol 2016, 29, 2071 –2095. doi: 10.1021/acs.chemrestox.6b00413

Ramirez, C. N.; Li, W.; Zhang, Ch.; Wu, R.; Su, Sh. et al. In vitro-in vivo dose response of ursolic Acid, Sulforaphane, PEITC, and Curcumin in Cancer Prevention. AAPSJ 2017, 20, 19. doi: 10.1208/s12248-017-0177-2

Du, L.; Xie, Zh.; Wu, L.; Chiu, M.; Lin, J. et al. Reactivation of RASSF1A in breast cancer cells by curcumin. Nutr Cancer 2012, 64, 1228–1235. doi: 10.1080/01635581.2012.717682

Jiang, A.; Wang, X.; Shan, X.; Li, Y.; Wang, P. et al. Curcumin reactivates silenced tumor suppressor gene RARβ by reducing DNA methylation. Phytother Res 2015, 29, 1237–1245. doi: 10.1002/ptr.5373

Yu, J.; Peng, Y.; Wu, L-Ch.; Xie, Zh.; Deng, Y. et al. Curcumin down-regulates DNA methyltransferase 1 and plays an anti-leukemic role in acute myeloid leukemia. PLoSOne 2013, 8, e55934. doi: 10.1371/journal.pone.0055934

Sahebkar, A.; Cicero, A. F. G.; Simental-Mendia, L. E.; Aggarwal, B. D.; Gupta, S. C. Curcumin downregulates human tumor necrosis factor-α levels: a systematic review and meta-analysis ofrandomized controlled trials. Pharmacol Res 2016, 107, 234–242. doi: 10.1016/j.phrs.2016.03.026

Guo, Y.; Wu, R.; Gaspar, J. M.; Sargsyan, D.; Su, Z.Y. et al. DNA methylome and transcriptome alterations and cancer prevention by curcumin in colitis-accelerated colon cancer in mice. Carcinogenesis 2018, 3, 39, 5, 669-680. doi: https://doi.org/10.1093/carcin/bgy043

Salehi, B.; Stojanović-Radić, Z.; Matejić, J.; Sharifi-Rad, M.; Anil Kumar, N. V. et al. The therapeutic potential of curcumin: A review of clinical trials. Eur J Med Chem 2019, 163, 527‒545. doi: 10.1016/ j.ejmech.2018.12.016

Sundar, D. K. S.; Houreld, N. N.; Abrahamse, H. Therapeutic potential and recent advances of curcumin in the treatment of aging-associated diseases. Molecules 2018, 23, E835. doi: 10.3390/molecules23040835

Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L. et al. Oxidative stress, aging, and diseases. Clin Interv Aging 2018, 13, 757‒772. doi:10.2147/CIA.S158513

Tan, B. L.; Norhaizan, M. E.; Liew, W. P.; Sulaiman Rahman, H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front Pharmacol. 2018, 16, 9, p 1162. doi: 10.3389/fphar.2018.01162

Santos, A. L.; Sinha, S., Lindner, A. B. The Good, the Bad, and the Ugly of ROS: New Insights on Aging and Aging-Related Diseases from Eukaryotic and Prokaryotic Model Organisms. Oxid. Med. Cell Longev. 2018, 1941285. doi: 10.1155/2018/1941285

Haas, R. H. Mitochondrial Dysfunction in Aging and Diseases of Aging. Biology 2019, 8, 48. doi: 10.3390/biology8020048

Koliada, A. K.; Krasnenkov, D. S.; Vaiserman, A. M. Telomeric aging: mitotic clock or stress indicator? Front Genet 2015, 6, 82. doi: 10.3389/fgene.2015.00082

Barnes, R. P.; Fouquerel, E.; Opresko, P. L. The impact of oxidative DNA damage and stress on telomere homeostasis. Mech. Ageing Dev. 2019, 177, 37‒45. doi: 10.1016/j.mad.2018.03.013

Gao, Q. Oxidative Stress and Autophagy. Adv Exp Med Biol 2019, 1206, 179-198. doi: 10.1007/978-981-15-0602-4_9

Chen, F.; Liu, Y.; Wong, N. K.; Xiao, J.; So, K. F. Oxidative Stress in Stem Cell Aging. Cell Transplant 2017, 26, 1483-1495. doi: 10.1177/0963689717735407

Lee, K. S.; Lee, B. S.; Semnani, S.; Avanesian, A.; Um Ch.-Y. et al. Curcumin extends life span, improves health span, and modulates the expression of age-associated aging genes in drosophila melanogaster. Rejuvenation Research 2010, 13, 5, 561–570. doi: 10.1089/rej.2010.1031

Pari, L.; Tewas, D.; Eckel, J. Role of curcumin in health and disease. Arch of Physiol and Biochem 2008, 114, 2, 127–149. doi: 10.1080/13813450802033958

Akinyemi, A. J.; Oboh, G.; Ogunsuyi, O.; Abolaji, A. O.; Udofia, A. Curcumin-supplemented diets improve antioxidant enzymes and alter acetylcholinesterase genes expression level in D. melanogaster model. Metab Brain Dis 2018, 33, 2, 369–375. doi: 10.1007/s11011-017-0100-7

Nguyen, T. T.; Vuu, M. D.; Huynh, M. A.; Yamaguchi, M.; Tran, L. T. et al. Curcumin Effectively Rescued Parkinson's Disease-Like Phenotypes in a Novel Drosophila melanogaster Model with dUCH Knockdown. Oxid Med Cell Longev 2018, 2038267. doi: 10.1155/2018/2038267

Chen, Y.; Liu, X.; Jiang, C.; Liu, L.; Ordovas, J. M. et al. Curcumin supplementation increases survival and lifespan in Drosophila under heat stress conditions. Biofactors, 2018, 44, 6, 577-587. doi: 10.1002/biof.1454

Srinivasan, M.; Prasad, N. R.; Menon, V. P. Protective effect of curcumin on γ-radiation induced DNA damage and lipid peroxidation in cultured human lymphocytes. Mutat Res 2006, 611, 1-2, 96–103. doi: 10.1016/j.mrgentox.2006.07.002

Soh, J. W; Marowsky, N.; Nichols, T. J.; Rahman, A. M.; Miah, T. et al. Curcumin is an early-acting stage-specific inducer of extended functional longevity in Drosophila. Experimental Gerontology 2013, 48, 2, 229-39. doi: 10.1016/j.exger.2012.09.007

Garratt, M.; Nakagawa, S.; Simons, M. J. Comparative idiosyncrasies in life extension by reduced mTOR signalling and its distinctiveness from dietary restriction. Aging Cell 2016, 15, 4, 737-43. doi: 10.1111/acel.12489

Blagosklonny, M. V. Aging: ROS or TOR. Cell Cycle 2008, 1, 7, 21, 3344-3354. doi: 10.4161/cc.7.21.6965

Published
2020-12-03
How to Cite
Pisaruk, A., Koshel, N., Mekhova, L., Zabuga, O., & Ivanov, S. (2020). Influense of curcumin on lifespan if it is applied at the larval stage of drosophila melanogaster. Ageing and Longevity, 1(2), 89-96. Retrieved from http://aging-longevity.org.ua/index.php/journal-description/article/view/17
Section
Статьи

Most read articles by the same author(s)